Chapter 10

Footings

This chapter provides guidance on the design of masonry systems and the associated slabs and footings used in houses and small- to medium- sized, low-rise commercial, industrial and residential buildings.

The emphasis is on minimising cracking when the building is subject to soil movement.

Contents

10.1 BASIS OF DESIGN
10.2 DESIGN REQUIREMENTS
10.3 STANDARD DESIGNS
10.4 WORKED EXAMPLE
10.1 Basis of Design

10.1.1 General

Soil Movement
When houses and other small buildings are constructed on clay or similar soils, moisture movements in the soils will lead to expansion and contraction of the soil, causing the building to either cantilever beyond a shrinking soil mound or sag between an expanded soil rim.

Footing Systems for Unreinforced Brickwork
The most common form of new housing in Australia is unreinforced brick walls (either cavity or brick veneer) supported by reinforced concrete strip footings or stiffened raft slabs. As the supporting soil contracts or expands, the cantilevering or spanning concrete footings or rafts are forced by the mass of the supported building to deflect. Any unreinforced brickwork may crack, moving sympathetically with the deflected concrete supporting structures. The design solutions adopted in AS 2870 Figure 3.1 cater for this scenario by ensuring that the internal and external concrete beams or footings have sufficient depth to minimize the deflection, and articulating the masonry wall at points of weakness so that indiscriminate cracking is minimized. For relatively stable soils, these systems will provide effective and economical solutions.

Integrated Reinforced Masonry/Footing Systems
There is a second practical approach which is common throughout northern Australia. Walls consisting of strong panels of reinforced hollow concrete blockwork are tied monolithically to the concrete footings or slabs. The strong stiff combination of wall and slab/footing span discrete distances over expanding or shrinking foundations, without cracking or showing distress. Such integrated footing/wall deep-beam systems in which the reinforced concrete slab or footing and the concrete masonry wall are structurally connected may be considered to act compositely to resist the loads when soil movement occurs. The concrete ground beams or footings may be poured integrally with reinforced concrete floor slabs. Alternatively, they may be separate from the floor.

10.1.2 Theoretical Considerations

The purpose of a footing system is for:
- the prevention of excessive movement of building components relative to each other; and
- the prevention of unsightly or structurally damaging cracks in masonry walls.

To some extent, these two criteria place different requirements on the footing system. While both will be satisfied by strong stiff footings, this is not always practical. The footings alone often do not have sufficient stiffness and the designer must either find some means of enhancing their stiffness, or arrange the walls in such a way that any movement does not lead to cracks or excessive differential movement. A crack differs from a movement joint in that it is unintentional and its exact location is often unpredictable. However, not all cracks significantly diminish the structural integrity or aesthetics of a building as demonstrated by the following examples:
- Reinforced concrete slabs and reinforced concrete masonry walls crack under load, but the steel reinforcing bars provide tensile strength to the cracked sections and control the width of the cracks once they have formed.
- A relatively flexible paint may bridge small discontinuous cracks in mortar or masonry units, thus ensuring that these cracks do not detract aesthetically.

The first task is to define permissible crack widths in various combinations of masonry wall and coating type. The second is to predict what foundation movement can be tolerated before cracks exceeding those permissible limits will form.

AS 2870 Table C1 Classification of Damage with Reference to Walls assesses the degree of damage associated with cracks of certain widths. AS 2870 Clause 1.3 Performance Requirements states:

Buildings supported by footing systems designed and constructed in accordance with this Standard on a normal site that is not subject to abnormal moisture conditions and maintained such that the original classification remains valid and abnormal moisture conditions do not develop are expected to experience usually no damage, a low incidence of damage Category 1 and a occasional incidence of damage Category 2.

The fundamental design questions are:
- Should the building be designed as a series of discrete unreinforced masonry panels which move independently in sympathy with the sagging or hogging footings? ie Unreinforced Brickwork; or
- Should the building be designed as a rigid reinforced masonry box (or series of rigid elements) which spans over dishing or doming foundations? ie Integrated Reinforced Masonry/Footing Systems.
Unreinforced Brickwork

Unreinforced brickwork does not possess great strength or resistance to cracking and it is impractical to require it to span great distances. Unreinforced masonry must therefore be divided into discrete panels using articulation. This will minimise the formation of cracks although movements of the panels relative to each other could present some problems. The following questions arise:

- At what combination of span and load do unreinforced masonry walls cease to behave as uncracked cantilevers (or beams), crack and follow the defected shape of the footing?
- Does the inclusion of joint reinforcement (consisting of two 3 mm galvanized wires) at strategic locations make the wall stronger, delaying the onset of initial cracking and does it make the final cracking pattern less severe?
- Do veneers such as plasterboard or renders strengthen a wall?
- What is the difference between the requirements for the various wall types and finishes? For example, the current rules require a much stiffer footing for a plasterboard wall supported by full masonry than for a plasterboard wall supported by a timber frame.

These questions were the subject of a research project at the University of South Australia and are discussed in the following paper:

Symons, MG, Amey, DJ and Johnston, RK

In-plane Bending of Single-Leaf Block Walls

Ten full-scale masonry walls (with and without joint reinforcement, plasterboard, hard plaster and compressible materials under the walls) and one clad, timber-framed wall were constructed in a frame with a retractable segmented base to simulate a deflecting footing. The walls were loaded at the top to simulate a roof load and the base segments were progressively withdrawn, causing the loaded wall to cantilever over progressively increasing lengths. Measurements of the loads, spans, deflections and crack widths have enabled the following conclusions to be drawn:

- A reinforced masonry wall has the ability to span lengths in excess of its height, and satisfactorily maintain acceptable serviceability limits for full working loads.
- Reinforcement can be in the form of wires in the mortar joints, plasterboard adhered to the surface of the blocks at regular and specified intervals, and hard plaster. Further testing is necessary to quantify the contribution of each of these methods to the reinforcing of solid walls. It is also of significance that reinforced masonry walls, while maintaining their structural integrity, do not simply reflect the profile of the footing movements. Only on application of overloads did the test walls develop severe cracking accompanied by deflections more in keeping with those of the footing.

- The clad timber frame distorted more than reinforced masonry walls under normal design loads and footing movements. Crack growth in the clad frame wall followed the footing movement, whereas cracking of reinforced masonry walls was limited to very narrow cracks, taking into account comparable design factors of loads, unsupported span lengths, and level of reinforcement.
- The authors acknowledge that only one timber frame has been tested to date. However, the behaviour of that frame indicates the necessity for a comprehensive series of tests and a review of the design requirements for frame construction.
- The research has revealed that solid masonry walling designed to engineering standards has better serviceability properties than clad timber framing. Throughout the tests a distinction between deflection ratios for different forms of walling bore no relevance to the properties and behaviour of the walls.
- It is recommended that codes of practice relating to wall and footing design state acceptable maximum crack widths for ALL types of wall construction and surface finish.

Integrated Reinforced Masonry/Footing Systems

Reinforced hollow concrete blockwork is capable of spanning significant distances without cracking and the need for articulation is not so great as for unreinforced masonry. By making construction rigid, there will be fewer problems with differential movements and the structure will be more able to resist wind and earthquake loads as well as the soil movement. However, the designer must be certain that the structure is able to remain intact when spanning the dishing or doming foundation. Otherwise, cracking and differential movement could be more severe than in the case of an articulated building. Care must also be taken to ensure that cross walls are suitably isolated by articulation, or reinforced to provide sufficient strength.

The research project listed below deals with the question: How do reinforced concrete blockwork walls (vertical reinforcement with a horizontal bond beam) acting compositely with integrated slabs or footings, behave as deep beams to resist movement?

Symons, MG

Strength of Masonry Wall Panels

University of South Australia Business Development Services Project No 4508 23rd March, 1995.

The report on this project includes the following:
This report describes the testing of two reinforced concrete block walls, one 190 mm thick and the other 140 mm thick. Both walls were tested in in-plane bending by the displacement of the wall to simulate movement of a footing. Both were tested initially as solid walls without openings. After reaching a predetermined limit for footing displacement, the walls had openings cut in them and were retested.

Suggested Design Methodology
For the correct operation of doors and windows, it is suggested that a limit be placed on the amount of distortion experienced through an opening. In the absence of any other data, 10 mm differential movement is suggested.

With a knowledge of the soil type and geometry of the house, predict the soil profile under the wall. Assume a cantilever length. Calculate the deflection of the wall at the unsupported jamb. If this deflection exceeds 10 mm, then:
- the opening should be reduced, or
- the opening should be moved to a location which reduces the deflection, or
- the footing and/or bond beam should be made stiffer.

10.1.3 DESIGN GUIDELINES FOR CONCRETE SLABS FOR USE WITH REINFORCED CONCRETE MASONRY HOUSING

1. Incorporation of Reinforced Masonry Walls
Where possible, reinforced masonry walls should be incorporated, including continuous bond beams around the top of the walls. The order of preference is as follows:
- 190 mm reinforced blockwork without openings
- 140 mm reinforced blockwork without openings
- 190 mm reinforced blockwork with window openings, without door openings
- 140 mm reinforced blockwork with window openings, without door openings
- 190 mm reinforced blockwork with door openings
- 140 mm reinforced blockwork with door openings

Vertical wall reinforcement should consist of either N12 or N16 bars at up to 2.0 metre centres, depending on the severity of soil movement and intensity of wind loading. These bars should be placed centrally within the cores of hollow concrete blockwork and lapped with starter bars previously cast into the footings or slab. The bars should be bent into a top bond beam continuous around the top of the walls. The reinforced cores and the bond beams are grouted with 20 MPa concrete grout.

2. Transverse Walls
It is common for the external wall to consist of reinforced blockwork. Where possible, the side walls should be without any openings, or at least without door openings. Where possible, some internal walls running across the slab should be without openings, or at least with no large openings. These walls should run the whole width of the slab. For example, the internal wall between a connected garage and the habitable part of the house should be continuous without openings. Similarly, the internal wall between bedrooms and the lounge/kitchen area should be continuous, if possible, except for one doorway to the bedroom area.

3. Longitudinal Walls
Where possible, some internal walls running along the slab should be without openings, or at least with no large openings. Although this is difficult, these walls should run the whole way along the slab. For example, the longitudinal internal wall in the bedroom area should align with any dividing wall in the lounge/kitchen area and should be connected with a continuous bond beam.

4. L-Shaped and T-Shaped Houses
Narrow protruding rooms should be avoided unless a central wall is included. If this is not possible, it may be necessary to retain sub-floor beams in these areas.

5. Open Plan
Houses with large open plan areas may exhibit large relative deflections, particularly in the case of soil expansion. This could damage brittle floor coverings and non-structural partitions. To avoid this problem, it may be necessary to retain sub-floor beams in these areas.
The typical wall/footing systems illustrated in this manual are based on AS 2870 and AS 3700, and are supported by research listed in the Bibliography in Part B:Chapter 1 and discussed herein.

10.2.1 DESIGN OPTIONS
AS 2870 makes several design options available to the designer:

- **Deemed-to-comply design using AS 2870 Section 3**
 - (a) Raft slabs or strip footings for unreinforced brickwork superstructures designed to Figure 3.1 to Figure 3.6 (Clause 10.2.2 this manual).
 - (b) Raft slabs for integrated reinforced masonry/footing systems designed to Figure 3.1 and Clause 3.2.5 (Clause 10.2.3 this manual).

- **Design by engineering principles using AS 2870 Section 4 and Appendix F**
 - (a) Modification using Clause 4.5 of standard rafts derived from Section 3 for both reinforced and unreinforced superstructures (Clause 10.2.4 this manual).
 - (b) Design of raft systems for unreinforced superstructures using Clause 4.4 (Clause 10.2.5 this manual).
 - (c) Design of integrated wall/slab or footing systems for reinforced superstructures using Clause 4.7 (Clause 10.2.6 this manual).

10.2.2 UNREINFORCED BRICKWORK, DEEMED-TO-COMPLY CONSTRUCTION USING AS 2870 FIGURE 3.1
AS 2870 Figure 3.1 (Figure 10.1) sets out the requirements for concrete slabs and beams under particular superstructures for various Site Classifications. These designs provide alternative options for strip footing designs.

Method:
1. Using AS 2870 Section 2, determine the Site Classification.
2. Using AS 2870 Figure 3.1 to Figure 3.6, determine the required depth of beams or footings, their maximum spacing, and the required slab reinforcement.
3. Detail the structure, including any required articulation, in accordance with AS 2870 Section 5.

10.2.3 INTEGRATED REINFORCED MASONRY/FOOTING SYSTEMS, DEEMED-TO-COMPLY CONSTRUCTION USING FIGURE 3.1 NOTE 12
The beam sizes in AS 2870 Figure 3.1 (Figure 10.1) provide adequate stiffness to ensure that non-structural wall systems placed on the slab are not subjected to excessive deflection. However, AS 2870 Clause 3.2.5 (Table 10.1) permits a reduction in these beam sizes.

In this case, the walls should be 190 mm or 140 mm single-leaf hollow concrete blockwork, reinforced with at least N12 bars at not more than 2.0 metre centres, tied to the footings with starter bars and incorporate a continuous bond beam (with at least two N12 bars) around the top of the wall. The walls should be adequately waterproofed.

This construction behaves as a stiff box and articulation of the bond beams should not be included since it destroys the continuity. When using this detail, care must be taken to ensure the adequacy and continuity of internal beams, particularly at re-entrant corners where an internal beam is deeper than the external beams. The commentary to the standard, AS 2870 Figure C3.4 shows a typical section and detail at re-entrant corners.

Method:
1. Using AS 2870 Section 2, determine the Site Classification.
2. Using AS 2870 Table 3.1, determine the equivalent construction.
3. Using AS 2870 Figure 3.1 to Figure 3.6, determine the required depth of internal beams or footings, their maximum spacing, and the required slab reinforcement.
4. Using AS 2870 Clause 3.2.5 and the recommended reinforcement increase, design the external beams as 300 mm x 300 mm with 3-L11TM reinforcement, if reinforced hollow concrete blockwork walls are structurally connected to the beams and act with them to resist movement.
5. Detail the structure in accordance with AS 2870 Section 5.
1 Internal and external edge beams shall form an integral structural grid in accordance with Clauses 5.3.8 and 5.3.9.

2 Slabs reinforcement for all site classes shall be as follows:
 - SL72 where slab length < 18m
 - SL82 where slab length is 18 to 25m
 - SL92 where slab length > 25m and < 30m.

3 Where the spacing in the other direction is 20% less than specified. Where the number of beams in a particular direction satisfies the requirements for the maximum spacing given above, the spacing between individual beams can be varied, provided that the spacing between any two beams does not exceed the spacing in Figure 10.1 by 25%.

4 Where external beams are wider than 300 mm, an extra bottom bar (or equivalent) of the same size is required for each 100 mm of additional width.

5 For a particular Class or site, if a beam depth greater than that given for the type of construction is selected, the bottom reinforcement specified for the deeper beam is to be used.

6 Except on site Classes M-D and H-D, a horizontal construction joint is permitted in the edge of the internal beams, provided the concrete-to-concrete joint is at least 150 mm wide and traversed by R10 fitments at 600 mm centres or equivalent (see Alternative Edge Detail, Figure 10.1).

7 Construction details are given in Clauses 6.4 and 6.6.

8 Where reinforcement is required to be accurately located, ligatures shall be provided.

9 If shrinkage crack control is a design consideration, refer to Clause 5.3.7.

10 Alternative reinforcement shown in the table below may be used in lieu of the slab fabric specified in the Table 10.1.

11 Where a reinforced single-leaf masonry wall is constructed directly above and structurally connected to a concrete edge beam, the beam may be reduced to 300 mm wide by 300 mm deep and reinforced with 3-11TM reinforcement. Internal beam details and spacings shall comply with Figure 10.1. At a re-entrant corner where an external beam continues as an internal beam, the internal beam details shall be continued for a length of 1 m into the external beam.

Figure 10.1 Details for Deemed-to-comply Stiffened Raft [Based on AS 2870 Figure 3.1]

Notes For Deemed-to-comply Stiffened Raft

<table>
<thead>
<tr>
<th>Alternative slab fabric</th>
<th>Additional reinforcement at top of beams if alternative slab fabric is used in lieu of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL102</td>
<td>SL92 3-L11TM</td>
</tr>
<tr>
<td>SL92</td>
<td>SL82 3-N16 3-L11TM</td>
</tr>
<tr>
<td>SL82</td>
<td>SL72 4-N16 4-L12TM 2-L12TM</td>
</tr>
</tbody>
</table>

For Deemed-to-comply Stiffened Raft [Based on AS 2870 Figure 3.1]
<table>
<thead>
<tr>
<th>Site Class</th>
<th>Depth D (mm)</th>
<th>Bottom Mesh</th>
<th>Bottom Reinforcement Bar Alternative</th>
<th>Top bar reinforcement (m)</th>
<th>Spacing S (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulated masonry veneer construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>300</td>
<td>3-L8TM</td>
<td>2N12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S</td>
<td>300</td>
<td>3-L8TM</td>
<td>2N12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>400</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>M-D</td>
<td>400</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>1N12</td>
<td>4</td>
</tr>
<tr>
<td>H1</td>
<td>400</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>1N12</td>
<td>4</td>
</tr>
<tr>
<td>H1-D</td>
<td>500</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>2N12</td>
<td>4</td>
</tr>
<tr>
<td>H2</td>
<td>600</td>
<td>3-L12TM</td>
<td>3N12</td>
<td>2N12</td>
<td>4</td>
</tr>
<tr>
<td>H2-D</td>
<td>700</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>Masonry veneer construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>300</td>
<td>3-L8TM</td>
<td>2N12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S</td>
<td>300</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>400</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>M-D</td>
<td>500</td>
<td>3-L12TM</td>
<td>3N12</td>
<td>2N12</td>
<td>4</td>
</tr>
<tr>
<td>H1</td>
<td>500</td>
<td>3-L12TM</td>
<td>3N12</td>
<td>3N12</td>
<td>4</td>
</tr>
<tr>
<td>H1-D</td>
<td>650</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>1N16</td>
<td>4</td>
</tr>
<tr>
<td>H2</td>
<td>750</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H2-D</td>
<td>750</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>Articulated full masonry construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>400</td>
<td>3-L8TM</td>
<td>2N12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S</td>
<td>500</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>2N12</td>
<td>–</td>
</tr>
<tr>
<td>M</td>
<td>625</td>
<td>3-L11TM</td>
<td>3N12</td>
<td>2N12</td>
<td>4</td>
</tr>
<tr>
<td>M-D</td>
<td>650</td>
<td>3-L12TM</td>
<td>2N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H1</td>
<td>750</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H1-D</td>
<td>800</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H2</td>
<td>1000</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H2-D</td>
<td>1000</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>Full masonry construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>500</td>
<td>3-L8TM</td>
<td>2N12</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S</td>
<td>700</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>950</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>M-D</td>
<td>1050</td>
<td>2x3-L11TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H1</td>
<td>1050</td>
<td>2x3-L12TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
<tr>
<td>H1-D</td>
<td>1100</td>
<td>2x3-L12TM</td>
<td>3N16</td>
<td>2N16</td>
<td>4</td>
</tr>
</tbody>
</table>
10.2.4 UNREINFORCED BRICKWORK OR INTEGRATED REINFORCED MASONRY/FOOTING SYSTEMS – MODIFICATION OF STANDARD RAFT DESIGNS USING AS 2879 CLAUSE 4.5

AS 2870 Clause 4.5 provides for the modification of standard raft designs for unreinforced or reinforced superstructures. This situation could arise where the geometry of the building dictates that the internal beams be spaced at centres closer than the maximum permitted by AS 2870 Table 3.1 (Figure 10.1).

Method:
1. Using AS 2870 Section 2, determine the characteristic surface movement, \(y_s \) for the particular soil.
2. Using AS 2870 Table 4.1 and engineering judgment, determine the maximum differential footing movement, \(\Delta \), which the particular superstructure is able to tolerate. Before substantial cracking becomes a problem. The following values are suggested:

<table>
<thead>
<tr>
<th>(\Delta) (mm)</th>
<th>Superstructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Articulated masonry veneer; Reinforced single leaf masonry external walls with articulated masonry internal walls on Class A or S sites.</td>
</tr>
<tr>
<td>20</td>
<td>Masonry veneer; Reinforced single-leaf masonry external walls with articulated masonry or reinforced single leaf masonry internal walls</td>
</tr>
<tr>
<td>15</td>
<td>Articulated full masonry; Reinforced single-leaf masonry external walls with masonry internal walls</td>
</tr>
</tbody>
</table>

3. Using AS 2870 Figure 3.1 determine the deemed-to-comply depth of beams, their maximum spacing and the required slab reinforcement.
4. Calculate the ratio of soil movement to structure tolerance, \(y_s/\Delta \). A high value is a sign of high soil movement or a sensitive structure and will require more-substantial beams.
5. Using AS 2870 Figure 4.1 (Figure 10.2), determine the required value of section modulus of beams. Vary depth to suit the required spacing, keeping the width constant.
6. Adjust the quantity of reinforcement in each beam where appropriate.
7. Detail the structure in accordance with AS 2870 Section 5.

Figure 10.2 Movement Ratio versus Unit Stiffness [Based on AS 2870 Figure 4.1]
10.2.5 UNREINFORCED BRICKWORK –
DESIGN OF RAFT FOOTING
SYSTEMS USING AS 2870
CLAUSE 4.4
AS 2870 Clause 4.4 makes provision for the
engineering design of raft slabs supporting
unreinforced masonry superstructures. Methods of assessing the soil mound
shape developed by both Walsh and
Mitchell (Table 10.2) are given in AS 2870
Appendix F.
Method:
1. Using AS 2870 Section 2, determine the
characteristic surface movement, \(y_s \) for
the particular soil.
2. Using AS 2870 Table 4.1 and engineering
judgment, determine the maximum
differential footing movement, \(\Delta \), which
the particular superstructure is able
to tolerate before substantial cracking
becomes a problem. See suggested
values in Clause 10.2.4.
3. Enter the structure geometry and
capacities into a grillage program
with spring supports (to simulate a
compressible soil mound) and shortening
or lengthening vertical supports (to
simulate expanding or shrinking soil at
the rim).
4. Perform a non-linear analysis to
calculate the cantilever lengths and the
respective moments, shears and
deflections. These calculations should be
done twice, once for a shrinking soil and
once for an expanding soil.
5. Check the moment capacity and the
stiffness of the slab and beams to
cantilever or span without deflections
exceeding the permissible.
6. Detail the structure in accordance with
AS 2870 Section 5.

10.2.6 INTEGRATED REINFORCED
MASONRY/FOOTING SYSTEM –
DESIGN USING AS 2870
CLAUSE 4.7
If the designer wishes to achieve more
economical designs for houses with
reinforced superstructures than are given
in the deemed-to-comply provisions of
Figure 3.1 including Note 12, the following
design approach can be taken.
Method:
1. Using AS 2870 Section 2, determine the
characteristic surface movement, \(y_s \) for
the particular soil.
2. Determine the required house geometry,
wall layout, etc.
3. Determine the moment capacity, shear
capacity, bending stiffness and shear
stiffness of various combinations of:
- walls + slab + beams at
 continuous walls
- walls + slab (no beams) at
 continuous walls
- walls + slab + beams with openings
 walls + slab (no beams) with openings
 beams + slabs (no walls)
- slabs (no beams or walls).
4. Using Appendix F, (Table 10.2) determine
the edge distance over which the soil
shrinkage or expansion will occur.
5. Enter the structure geometry, capacities
and edge distances into a grillage program with spring supports (to
simulate a compressible soil mound). Shortening or lengthening vertical
supports around the edge of the
structure simulate shrinking or expanding
soil at the rim. Alternatively, a simpler
solution can be achieved by assuming
that parts of the structure cantilever or
span distances corresponding to the
calculated edge distances.
6. Perform an analysis to calculate moments,
shears and deflections. These calculations
should be done twice, once for a
shrinking soil and once for an expanding
soil.
7. Check the shear and moment capacities
of each wall/slab/beam combination to
span without cracking, particularly at
doors and window openings.
8. Check the deflections at all openings
and other strategic points to ensure
that doors and windows can still open,
plasterboard and cladding does not crack.
9. Detail the structure such that rotation
and twisting of walls does not occur. For
very long structures, it may be prudent
to provide some articulation joints at
suitable centres such that the ability to
span is not impeded whilst the structure
is not forced to span lengths in excess of
those values dictated by the wall/footing
strength.
Notations used by Mitchell in Table 10.2

- B = Width of footing area
- E = Young's Modulus of footing material
- I = Moment of inertia of footing
- L = Length of footing or covered area
- M = Moment of superstructure loads about footing centre
- Y = Maximum differential soil movement
- k = Swelling stiffness
- m = Power of polynomial defining soil surface under covered area, or shape factor
- w = Superstructure loads per unit area of footing
- \(\Delta \) = Maximum differential footing movement

Formulae used by Mitchell in Table 10.2

Moment and stiffness for sagging condition with a uniformly-distributed load:

\[
M^+ = \frac{wL^2B}{8} (1 - \alpha^+), \quad \frac{EI}{12\Delta} = \frac{M^+L^2}{12\Delta}
\]

Moment and stiffness for hogging condition with a uniformly-distributed load:

\[
M^- = \frac{wL^2B}{8} (1 - \alpha^-), \quad \frac{EI}{12\Delta} = \frac{M^-L^2}{12\Delta}
\]

Table 10.2 Moment-Correction Coefficients (Extract from Mitchell)

<table>
<thead>
<tr>
<th>Moment Correction Factors ((\alpha^+)) for Sagging Condition with a Uniformly-distributed Load</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_s/\Delta)</td>
<td>w/(kY)</td>
</tr>
<tr>
<td>(>0.50)</td>
<td>*</td>
</tr>
<tr>
<td>0.30</td>
<td>0.46</td>
</tr>
<tr>
<td>0.20</td>
<td>0.35</td>
</tr>
<tr>
<td>0.10</td>
<td>0.23</td>
</tr>
<tr>
<td>0.05</td>
<td>0.16</td>
</tr>
<tr>
<td>0.01</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moment Correction Factors ((\alpha^-)) for Hogging Condition with a Uniformly-distributed Load</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_s/\Delta)</td>
<td>w/(kY)</td>
</tr>
<tr>
<td>(>1.00)</td>
<td>*</td>
</tr>
<tr>
<td>0.50</td>
<td>0.69</td>
</tr>
<tr>
<td>0.10</td>
<td>0.41</td>
</tr>
<tr>
<td>0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>2.50</td>
<td>(>1.00)</td>
</tr>
<tr>
<td>0.50</td>
<td>0.69</td>
</tr>
<tr>
<td>0.10</td>
<td>0.49</td>
</tr>
<tr>
<td>0.01</td>
<td>0.24</td>
</tr>
<tr>
<td>1.25</td>
<td>(>0.10)</td>
</tr>
<tr>
<td>0.05</td>
<td>0.39</td>
</tr>
<tr>
<td>0.01</td>
<td>0.14</td>
</tr>
</tbody>
</table>

* Use minimum footings with check for bearing capacity considerations.
10.2.7 DETAILING AND CONSTRUCTION GUIDELINES

This section provides explanations of AS 2870 Sections 5 and 6 for detailing and construction of the earthworks, slabs, footings and concrete masonry superstructure.

Clause 5.1 General

Clause 5.2 Drainage

Clause 5.2.1 places requirements on floor levels, pointing out the need to consider plumbing, run-off, excavation, filling, flooding, landscaping, stormwater discharge and termite management.

Clause 5.2.2 permits the 150mm freeboard to be reduced in certain circumstances, such as sandy well drained soils (100 mm) and where external paved areas slope away (50 mm).

Clause 5.3 Requirements for rafts and slabs

Clause 5.3.1 requires concrete to be not less than Grade N20 with a 20 mm maximum aggregate size. The slump is not specified, but a maximum slump of 100 mm would be acceptable. Water must not be added on site.

Clause 5.3.2 gives the requirements for reinforcement cover, laps, positioning and details.

Clause 5.3.3 gives the requirements for vapour barriers and damp-proofing membranes. Adjacent sheets are to be lapped, but there is no requirement for taping these laps except at plumbing penetrations. In South Australia and other areas prone to salt-damp, a high impact resistance barrier will be required.

Clause 5.3.4 provides specification for edge rebates, which should be detailed by the engineer.

Paragraph (d) of Clause 5.3.4, states that single-leaf masonry does not require an edge rebate. This is because this type of construction would incorporate reinforcement to minimise cracking and continuous weatherproofing paint system over the exposed surface of wall and beam.

Clause 5.3.5 provides specification for recesses.

Clause 5.3.6 provides specification for heating cables and pipes.

Clause 5.3.7 provides details for brittle floor coverings.

Clause 5.3.8 sets out the requirements for beam continuity in rafts. The exact locations of beams should be determined by the engineer with reference to Figure 5.4 and Table 3.1. Once this is done the structure should be examined to determine whether the size of the beams can be reduced using Clause 4.5.

Clause 5.3.9 requires the first internal beam to be within 4.0 metres of the external beam for Class M and H sites, thus ensuring additional stiffness at the location where the beam/slab system could be suspended when the soil shrinks.

Clause 5.4 Requirements for pad and strip footings

Clauses 5.4.1 and 5.4.2 set out the requirements for concrete and reinforcement similar to the case for slabs.

Clause 5.4.3 limits the slope of footings to 1 in 10 and provides details of how steps may be achieved.

Clause 5.5 Requirements in Aggressive Soils

Clause 5.5.1 General

Clause 5.5.2 Isolation from the ground

Clause 5.5.3 Concrete strength and detailing

Clause 5.6 Additional requirements for Class M, H1, H2 and E Sites

Clause 5.6.1 requires architectural solutions to reduce the effects of movement in Class H or E sites, including detailing masonry, isolation and articulation.

Clause 5.6.2 requires continuity of slabs over rock.

Clause 5.6.3 requires enhanced drainage.

Clause 5.6.4 requires enhanced plumbing.

Clause 6.1 General

See also Clause 6.4.7 for placing and compacting concrete.

Clause 6.2 Permanent excavations

Clause 6.2 restricts excavations over 600 mm deep.

Clause 6.3 Temporary excavations

Clause 6.3 restricts the location of service trenches.

Clause 6.4 Construction of slabs

Clause 6.4.1 notes that land slip may need to be considered separately.

Clause 6.4.2 provides rules for filling.

Clause 6.4.3 and Commentary C6.4.3 provides guidance on:

- Stripping Top Soil

- Avoiding Erosion. On sloping sites liable to erosion by surface water, edge beams are to be protected by:
 - Grading the ground surface to limit the catchment area adjacent to the building to less than 100 square metres; or
 - Providing a drainage system which prevents run-off near the building; or
 - Providing a 600 mm-wide concrete path around the building; or
 - Founding the edge beam at least 300 mm below the finished ground level.
Allowable Bearing Pressures
Slope of Beams. A maximum slope of 1 in 10 is permitted. This would be determined by the designer.
Blinding Layer. It is not a requirement to place a sand layer under the slab, although it may be desirable in order to reduce concrete use and avoid rupturing the membrane.
Clause 6.4.4 gives three alternatives for sloping sites.
Clause 6.4.5 gives the methods of retaining fill for Class A, S or M sites.
Clause 6.4.6 states the need for fixing reinforcement.
Clause 6.4.7 states that concrete shall be placed and compacted in accordance with good building practice. Commentary C6.1 further expands this and explains that vibration is a requirement only on Class H1, H2 and E sites.
However, it is of the opinion of the Concrete Masonry Association of Australia that both vibration and curing are beneficial and have therefore been included in the Specification in this manual.

Clause 6.5 Construction of strip and pad footings
Clause 6.5 provides details of strip and pad footings. Alternatively, for a Class A or S site, strip or pad footings may be founded on controlled sand fill.

Clause 6.6 Additional requirements for Moderately, Highly, and Extremely Reactive Sites
The following additional requirements are detailed for Class H and E sites.
(a) Detailing.
(b) Sleeving of penetrations to avoid rupture due to differential movement.
(c) Collection and channelling of run-off.
(d) Avoidance of back-filling with porous material.
(e) Avoidance of water ponding in trenches.
(f) Articulation of pipe joints within 3 metres of the building.
(g) Vibration of concrete and fixing of reinforcement.
10.3 STANDARD DESIGNS

10.3.1 GENERAL

Design and detailing
All design and detailing shall comply with the requirements of AS 2870 for concrete slabs and footings, and AS 3700 for concrete masonry.

It is the designer's responsibility to allow for the effects of control joints, chases, openings, strength and stiffness of ties and connectors, and strength and stiffness of supports, in addition to normal considerations of loads and masonry properties. Control joints and openings must be treated as free ends as specified by AS 3700.

Masonry properties
The standard designs in this chapter are based on masonry properties complying with the General Specification set out in Part C: Chapter 2, modified as noted on the standard design chart and as noted below.

Hollow concrete blocks
Width 90 mm, 110 mm, 140 mm and 190 mm
Height 190 mm
Length 390 mm
Face-shell bedded
Minimum face-shell thickness, \(t_s = 25 \text{ mm for 90 mm, 110 mm and 140 mm units} \)
\(t_s = 30 \text{ mm for 190 mm units} \)
Minimum characteristic compressive strength, \(f_{uc} = 15 \text{ MPa} \)

Solid or cored concrete bricks
Width 110 mm
Height 76 mm
Length 230 mm
Fully bedded
Minimum characteristic compressive strength, \(f_{uc} = 10 \text{ MPa} \)
Minimum characteristic lateral modulus of rupture, \(f_{ar} = 0.8 \text{ MPa} \)

Mortar joints
Mortar type M3 (or M4)
Joint thickness 10 mm

Concrete grout
Minimum characteristic compressive strength, \(f_c = 20 \text{ MPa} \)
Minimum cement content 300 kg/m\(^3\)

Steel reinforcement
N12, or N16 as noted. Fabric and trench mesh as noted.

Concrete slabs-on-ground and footings
Strength grade N20
Maximum slump 100 mm
Maximum aggregate size 20 mm

10.3.2 INDEX TO DESIGN CHARTS

Design charts contain data for Design By Engineering Principles. The data may be used in manual or computer analyses used to design by engineering principles in accordance with AS 2870 Section 4.

Chart Index
Typical Edge Distances for Slabs on Reactive Soils
Reinforced Masonry – Section Properties
TYPICAL EDGE DISTANCES FOR SLABS ON REACTIVE SOILS

EDGE DISTANCE FOR CENTRE-HEAVE

<table>
<thead>
<tr>
<th>Site Class</th>
<th>Surface movement y_s (mm)</th>
<th>Mound movement y_m (mm)</th>
<th>Depth of suction H_s (m)</th>
<th>Minimum edge distance e (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>0</td>
<td>1.2</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>1.2</td>
<td>0.34</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>1.2</td>
<td>0.54</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>21</td>
<td>1.5</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>1.5</td>
<td>0.97</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>H</td>
<td>50</td>
<td>35</td>
<td>1.8</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>60</td>
<td>42</td>
<td>1.8</td>
<td>1.39</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>70</td>
<td>49</td>
<td>1.8</td>
<td>1.59</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
</tbody>
</table>

EDGE DISTANCE FOR EDGE-HEAVE

<table>
<thead>
<tr>
<th>Site Class</th>
<th>Surface movement y_s (mm)</th>
<th>Mound movement y_m (mm)</th>
<th>Slab length L (m)</th>
<th>Minimum edge distance e (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>0</td>
<td>6.0</td>
<td>0.60*</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td></td>
<td>7.5</td>
<td>0.60*</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td></td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>6.0</td>
<td>10</td>
<td>0.88*</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>0.88*</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>6.0</td>
<td>20</td>
<td>1.16*</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>1.16*</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>6.0</td>
<td>30</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>1.44*</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>6.0</td>
<td>40</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>1.50</td>
</tr>
<tr>
<td>H</td>
<td>50</td>
<td>6.0</td>
<td>50</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>1.50</td>
</tr>
<tr>
<td>60</td>
<td>42</td>
<td>6.0</td>
<td>60</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>1.50</td>
</tr>
<tr>
<td>70</td>
<td>49</td>
<td>6.0</td>
<td>70</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td></td>
<td>9.0</td>
<td>1.50</td>
</tr>
</tbody>
</table>

BASIS OF TABLES

- Calculated in accordance with AS 2870 Clauses F4 (a), (b) and (c)
- Differential mound movement (mm), $y_m = 0.7 y_s$
- Edge distance from centre-heave (m), $e = \frac{H_s}{8} + \frac{y_m}{0.036}$
- Edge distance from edge-heave (m), $e = 0.2 L \leq 0.6 + \frac{y_m}{0.025}$
- Allowable bearing pressure:
 - Centre-heave (shrinking soil) – 5000 kPa/m (except at edges where a very low value is used)
 - Edge-heave (swelling soil) – 1000 kPa/m under edge beams (Zero assumed elsewhere)
- * Limit values apply $(0.6 + \frac{y_m}{0.025})$
REINFORCED MASONRY – Section Properties

<table>
<thead>
<tr>
<th>Description</th>
<th>Variables</th>
<th>Area A (m²)</th>
<th>Moment of inertia I (m⁴)</th>
<th>Footing condition</th>
<th>Shear capacity Vcap (kN)</th>
<th>Moment capacity Mcap (kN.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete slab</td>
<td>T = 100 mm B = 1000 mm</td>
<td>0.100</td>
<td>0.000 045</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Concrete beam</td>
<td>D = 300 mm</td>
<td>0.090</td>
<td>0.000 226</td>
<td>H</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>D = 400 mm</td>
<td>0.120</td>
<td>0.000 601</td>
<td>H</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>D = 500 mm</td>
<td>0.150</td>
<td>0.001 270</td>
<td>H</td>
<td>47</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>D = 600 mm</td>
<td>0.180</td>
<td>0.002 300</td>
<td>H</td>
<td>48</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>45</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>D = 700 mm</td>
<td>0.210</td>
<td>0.003 740</td>
<td>H</td>
<td>48</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>55</td>
<td>141</td>
</tr>
<tr>
<td>No openings in wall, plus 300 x 300 beam</td>
<td>W = 190 mm R₁ = 4-N12</td>
<td>0.546</td>
<td>0.150 000</td>
<td>H and S</td>
<td>125</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W = 190 mm R₁ = 4-N16</td>
<td>0.546</td>
<td>0.150 000</td>
<td>H and S</td>
<td>142</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>W = 140 mm R₁ = 2-N12</td>
<td>0.426</td>
<td>0.111 000</td>
<td>H and S</td>
<td>97</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>W = 140 mm R₁ = 2-N16</td>
<td>0.426</td>
<td>0.111 000</td>
<td>H and S</td>
<td>108</td>
<td>187</td>
</tr>
<tr>
<td>Door opening in wall, plus 300 x 300 beam</td>
<td>W = 190 mm R₁ = 4-N12</td>
<td>0.145</td>
<td>0.000 285</td>
<td>H and S</td>
<td>39</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W = 190 mm R₁ = 4-N16</td>
<td>0.145</td>
<td>0.000 285</td>
<td>H and S</td>
<td>41</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td>W = 140 mm R₁ = 2-N12</td>
<td>0.131</td>
<td>0.000 270</td>
<td>H and S</td>
<td>35</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>W = 140 mm R₁ = 2-N16</td>
<td>0.131</td>
<td>0.000 270</td>
<td>H and S</td>
<td>36</td>
<td>265</td>
</tr>
<tr>
<td>Window opening in wall, plus 300 x 300 beam</td>
<td>W = 190 mm R₁ = 4-N12</td>
<td>0.354</td>
<td>0.021 400</td>
<td>H and S</td>
<td>57</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W = 190 mm R₁ = 4-N16</td>
<td>0.354</td>
<td>0.021 400</td>
<td>H and S</td>
<td>59</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>W = 140 mm R₁ = 2-N12</td>
<td>0.285</td>
<td>0.015 800</td>
<td>H and S</td>
<td>45</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>W = 140 mm R₁ = 2-N16</td>
<td>0.285</td>
<td>0.015 800</td>
<td>H and S</td>
<td>46</td>
<td>269</td>
</tr>
</tbody>
</table>
10.4 WORKED EXAMPLE

Purpose of the worked example
The purpose of the following worked example is to demonstrate the steps to be followed when performing manual calculations or when preparing computer software for the analysis and design of masonry. The worked example also serves the purpose of demonstrating the origin of the Standard Designs which are based on similar masonry capacity considerations. Although comprehensive in its treatment of AS 2870, the worked example is not intended to analyze or design all parts of the particular structure. It deals only with enough to demonstrate the design method.

Design and detailing
All design and detailing shall comply with the requirements of AS 2870 and, where appropriate, AS 3700.

It is the designer's responsibility to allow for the effects of control joints, chases, openings, strength and stiffness of ties and connectors, and strength and stiffness of supports, in addition to normal considerations of loads and masonry properties. Control joints and openings must be treated as free ends as specified by AS 3700.

Masonry properties
The worked examples in this chapter are based on masonry properties complying with the General Specification set out in Part C:Chapter 2, modified as noted in the calculations and as noted below.

Hollow concrete blocks
Width 90 mm, 110 mm, 140 mm and 190 mm
Height 190 mm
Length 390 mm
Face-shell bedded
Minimum face-shell thickness, t_s = 25 mm for 90 mm, 110 mm and 140 mm units
 t_s = 30 mm for 190 mm units
Minimum characteristic compressive strength,
 f'_{cu} = 15 MPa
Minimum characteristic lateral modulus of rupture,
 f'_{ur} = 0.8 MPa

Solid or cored concrete bricks
Width 110 mm
Height 76 mm
Length 230 mm
Fully bedded
Minimum characteristic compressive strength,
 f'_{cu} = 10 MPa
Minimum characteristic lateral modulus of rupture,
 f'_{ur} = 0.8 MPa

Mortar joints
Mortar type M3 (or M4)
Joint thickness 10 mm

Concrete grout
Minimum characteristic compressive strength,
 f'_{c} = 20 MPa
Minimum cement content 300 kg/m³

Steel reinforcement
N12, or N16 as noted. Fabric and trench mesh as noted.

Concrete slabs-on-ground and footings
Strength grade N20
Maximum slump 100 mm
Maximum aggregate size 20 mm

Index to parts of worked example
Worked example involves design of the slab and beams for a house, with alternative types of superstructures, using different methods as follows:

1. Unreinforced masonry superstructure using deemed-to-comply provisions of AS 2870 Figure 3.1.
2. Reinforced masonry superstructure using deemed-to-comply provisions of AS 2870 Figure 3.1 and Clause 3.2.5.
3. Reinforced or unreinforced superstructure by modifying standard designs using AS 2870 Clause 4.5.
5. Reinforced masonry superstructure using AS 2870 Clause 4.7.
Worked Example

DESIGN BRIEF

For the house plan shown below, design the slabs and beams for alternative types of superstructures, using the following:

1. Design for unreinforced masonry superstructure using deemed-to-comply provisions of AS 2870 Figure 3.1
2. Design for reinforced masonry superstructure using deemed-to-comply provisions of AS 2870 Figure 3.1 and Note 12
3. Design for reinforced or unreinforced superstructure by modifying standard designs using AS 2870 Clause 4.5
4. Design for unreinforced masonry superstructure using AS 2870 Clause 4.4
5. Design for reinforced masonry superstructure using AS 2870 Clause 4.7

BEARING CALCULATIONS

- **Internal slabs without walls**
 \[P = 1.0 \times PL_{slab} + 0.5 \times IL \]
 \[= (1.0 \times 25 \times 0.1 \times 1.3) + (0.5 \times 1.5) \]
 \[= 4.0 \text{ kN/m}^2 \]

- **External walls**
 \[P = 1.0 \times PL_{slab} + \text{wall} + \text{footing} + \text{roof} + 0.5 \times IL \]
 \[= 1.0 \times [(25 \times 0.1 \times 0.5) + (2.5 \times 1.72) + (0.3 \times 0.3 \times 25) + (1.0 \times 8.0)] + (0.5 \times 1.5 \times 0.5) \]
 \[= 12.2 \text{ kN/m} \]

- **Internal walls**
 \[P = 1.0 \times PL_{slab} + \text{wall} + \text{footing} + 0.5 \times IL \]
 \[= 1.0 \times [(25 \times 0.1 \times 0.7) + (2.5 \times 1.39) + (0.3 \times 0.3 \times 25)] + (0.5 \times 1.5 \times 0.7) \]
 \[= 8.0 \text{ kN/m} \]

- **Total factored loads**
 \[P_t = (40 \times 12.2) + (33 \times 8.0) + (187 \times 4.0) \]
 \[= 1500 \text{ kN} \]

- **Average bearing pressure**
 \[q_{av} = \frac{1500}{13.0 \times 7.0} \]
 \[= 16.5 \text{ kPa} \]

NOTE:
References are to AS 2870, unless stated otherwise
Visual Assessment of Site

- What are the site dimensions and layout? No
- Are there existing buildings on site? No
- Are there buildings adjacent to the site? Yes
- Are there existing trees? Yes
- Is it intended to remove any trees? No
- Is it intended to plant any trees? No
- Is there any existing fill? No
- Will removal or planting of trees affect moisture content? No
- Is there any existing fill? No
- Is it intended to bench the site with cut and fill? No

Required Number of Test Bore Holes

Is deep-seated foundation movement expected? ie $H_s > 3.0$
- Yes: Use three bore holes per site Clause 2.2.3(b)
- No: Use one bore hole per site Clause 2.2.3(a)

Required Depth of Test Bore Holes

Is depth of design suction change, $H_s > 2.0$ m?
- (In Sydney, Gosford, Newcastle and Hunter Valley $H_s = 1.5$ m Table 2.4)
 - Yes: Use hole depth, $d = 0.75 H_s$
 - No: Has rock been encountered?
 - Yes: Use hole depth, $d = depth to rock$
 - No: Use classifier’s opinion that further drilling is unnecessary to identify the profile
 - Yes: Use hole depth, $d = depth specified by classifier$
 - No: Use hole depth, $d = 1.5$ m

Determination of Soil Shrinkage Index, I_{ps}

Are laboratory tests to AS 1289.7.1.2 and 3 available?
- Yes: Use I_{ps} from tests Clause 2.2.3(a)
- No: Are correlations between shrinkage index, I_{ps}, and other clay index tests available?
 - Yes: Use I_{ps} from the correlations Clause 2.2.3(b)
 - No: Use visual tactile identification by an engineer or engineering geologist having appropriate expertise and local experience to estimate soil shrinkage index, I_{ps} Clause 2.2.3(c)

Determination of Characteristic Surface Movement, y_s

Depth of crack zone: $0.33H_s$ to H_s Table 2.4
- In Adelaide and Melbourne $= 0.75H_s$
- In Sydney, Gosford, Newcastle and Hunter Valley $= 0.5H_s$

Instability Index, $I_{pt} = \alpha \times I_{ps}$

Change in suction at soil surface, $\Delta u = \Delta pF$

Determination of Site Class

Table 2.3

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Soil Type</th>
<th>Depth, z (mm)</th>
<th>Interval, dz</th>
<th>Alpha</th>
<th>I_{ps}</th>
<th>I_{pt}</th>
<th>Suction, ΔpF</th>
<th>Instability Index, I_{pt}</th>
<th>Soil Shrinkage Index, I_{ps}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole Number 1:</td>
<td>Light clay with sand</td>
<td>0-800</td>
<td>800</td>
<td>1.0</td>
<td>0.020</td>
<td>0.020</td>
<td>1.5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Hole Number 2:</td>
<td>Heavy brown clay</td>
<td>800-1100</td>
<td>300</td>
<td>1.8</td>
<td>0.016</td>
<td>0.029</td>
<td>1.5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Site Classification</td>
<td>Sandy soil</td>
<td>1100-1500</td>
<td>400</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic Surface Movement, $y_s = 37$
1 DESIGN FOR UNREINFORCED MASONRY SUPERSTRUCTURE USING DEEM-TO-COMPLY PROVISIONS OF AS 2870 FIGURE 3.1

- **Site Classification:** M
- **Walls:** Articulated masonry veneer
- **Edge and internal beam depth**
 - $D = 400$ mm
- **Bottom reinforcement**
 - 3-L11TM
- **Maximum beam spacing**
 - 6.0 m
- **Slab fabric**
 - SL72

2 DESIGN FOR REINFORCED MASONRY SUPERSTRUCTURE USING DEEM-TO-COMPLY PROVISIONS OF AS 2870 FIGURE 3.1 NOTE 12

- **Site Classification:** M
- **Walls:** Reinforced single-leaf masonry
 - External walls: Reinforced single-leaf masonry
 - Internal walls: Reinforced single-leaf masonry
- **Equivalent construction:** Masonry veneer
- **Table 3.1**

- **Internal beams**
 - Depth, $D_i = 400$ mm
 - Reinforcement, 3-L11TM
 - Maximum spacing, 5.0 m
- **Slabs**
 - Depth, $D_s = 100$ mm
 - Reinforcement, SL72
- **External beams**
 - Using AS 3700 Clause 3.2.5, external beams may be reduced to 300 x 300 with 3-L11TM reinforcement.
 - Provide continuity at re-entrant corners and beams.
 - Lap internal beam reinforcement into external beams.

NOTE:

References are to AS 2870, unless stated otherwise.
Worked Example

3 Design for Reinforced or Unreinforced Masonry Superstructure by Modifying Standard Designs Using AS 2870 Clause 4.5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam depth</td>
<td>400 mm</td>
<td>OK (250 to 1000 mm)</td>
</tr>
<tr>
<td>Min. depth of any beam</td>
<td>400 mm x 0.7 = 280 mm</td>
<td></td>
</tr>
<tr>
<td>Beam width</td>
<td>300 mm</td>
<td>OK (110 to 400 mm)</td>
</tr>
<tr>
<td>Average load</td>
<td>16.5 kPa</td>
<td>(Just outside limit of 15 kPa)</td>
</tr>
<tr>
<td>Edge line load</td>
<td>12.2 kN/m</td>
<td>OK (< 15 kN/m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Longitudinal Beams

\[\log \left(\frac{B_w D^3}{12 W} \right) = \frac{\left(\frac{y_s}{\Delta - 0.67} \right)}{2} + 8.0 = 8.59 \]

B_w = 300 mm

<table>
<thead>
<tr>
<th>Beam spacing</th>
<th>3.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of slab</td>
<td>W = 7.0 m</td>
</tr>
<tr>
<td>Number of beams</td>
<td>n = 3</td>
</tr>
<tr>
<td>Depth of beam</td>
<td>D<sub>l</sub> = 329 mm</td>
</tr>
</tbody>
</table>

Transverse Beams

\[\log \left(\frac{B_w D^3}{12 W} \right) = 8.59 \]

B_w = 300 mm

<table>
<thead>
<tr>
<th>Span</th>
<th>13 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of beam</td>
<td>W = 13.0 m</td>
</tr>
<tr>
<td>Number of beams</td>
<td>n = 5</td>
</tr>
<tr>
<td>Depth of beam</td>
<td>D<sub>l</sub> = 341 mm</td>
</tr>
</tbody>
</table>

References

References are to AS 2870, unless stated otherwise.
Soil Movement/Structure Sensitivity

Length of transverse beams

\[L = 7000 \text{ mm} \]

Bearing Pressure Ratio

\[k = 1000 \text{ kPa/m} \]

Footing Exposure

Depth of design suction change

\[H_k = 1500 \text{ mm} \]

Depth of footing below ground

\[D = 300 \text{ mm} \]

Ground around the house is impermeable

\[g = 0.75 \]

\[a = H_k - D = 1500 - 300 = 1200 \text{ mm} \]

\[w = 16.5 \text{ kPa} \]

Moments and Required Stiffness

Using Mitchell's tables

For sagging, use the minimum footing specified in AS 2870

\[M_s = \frac{w L^2 B}{8n} (1 - \alpha^*) \]

\[= \frac{16.5 \times 7.0^2 \times 13}{8 \times 5} (1 - 0.89) \]

\[= 28.9 \text{ kNm} \]

For hogging

\[\alpha^* = 0.89 \]

\[V = \frac{w L B}{2n} (1 - \alpha^*) \]

\[= \frac{16.5 \times 7.0 \times 13}{2 \times 5} (1 - 0.89) \]

\[= 16.5 \text{ kN} \]

Shape factor

\[m = \frac{g L}{a} = 0.75 \times 7000 \]

\[= 4.4 \]

Average factored bearing pressure

\[w = 16.5 \text{ kPa} \]

\[\ell = \frac{g L}{12 a} \]

\[= \frac{28.9 \times 7.0^2}{12 \times 0.0117} \]

\[= 10,096 \text{ kN/m}^2 \]
Beam Moment and Shear Capacities

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete cover</td>
<td>CT = 20 mm (To top of slab)</td>
</tr>
<tr>
<td></td>
<td>CB = 30 mm (To membrane)</td>
</tr>
<tr>
<td>Concrete cover</td>
<td>CB = 30 mm (To membrane)</td>
</tr>
<tr>
<td>Beam effective width</td>
<td>b_eff = 2.0 maximum for edge beams</td>
</tr>
<tr>
<td></td>
<td>or 4.0 maximum for internal beams</td>
</tr>
<tr>
<td></td>
<td>or half way to adjacent beams</td>
</tr>
<tr>
<td>For hogging of an edge beam</td>
<td>C = 20 mm</td>
</tr>
<tr>
<td></td>
<td>b_eff = 3.5</td>
</tr>
<tr>
<td></td>
<td>= 1750 mm</td>
</tr>
<tr>
<td>Effective depth</td>
<td>d = D - C - Transverse bars - dia</td>
</tr>
<tr>
<td></td>
<td>= 380 - 20 - 7 - 7/2</td>
</tr>
<tr>
<td></td>
<td>= 349 mm</td>
</tr>
<tr>
<td>Effective moment of inertia</td>
<td>I = 0.045 b_eff d³ (0.7 + 0.3 b_w/b_eff)³</td>
</tr>
<tr>
<td></td>
<td>= 0.045 x 1750 x 349³ (0.7 + 0.3 300/1750)³</td>
</tr>
<tr>
<td></td>
<td>= 1.42 x 10⁹ mm⁴</td>
</tr>
<tr>
<td></td>
<td>= 0.00142 m⁴</td>
</tr>
</tbody>
</table>

Elastic moduli of concrete

- E_c = 15 000 MPa
- = 15 x 10⁶ kN/m²

References

- AS 3600 Table 2.2.2
- 8.5.3.1

Stiffness parameter

\[Z_{eff} = \frac{I_{eff}}{0.5d} \]

\[= \frac{0.00142}{0.5 x 349} \]

\[= 0.00814 \text{ m}^3 \]

Cracking moment

\[M_{cr} = f_t Z_{eff} \]

\[= 1.8 x 10^3 x 0.00814 \]

\[= 14.6 \text{ kNm} \]

Moment capacity

\[M_{cap} = 0.6 f_y A_s d \left(1 - 0.6 \frac{f_y}{f'_c} \frac{A_s}{b d} \right) \]

\[= 0.6 x 500 x \frac{308 x 349}{1 x 10^6} x \left(1 - \frac{0.6 x 500 x 308}{20 x 300 x 349} \right) \]

\[= 30.8 \text{ kNm} \]

\[> 1.2 M_{cr} \]

\[= 1.2 x 14.6 \]

\[= 17.5 \text{ kNm} \]

Elastic modulus of concrete

\[E_c = 15 000 \text{ MPa} \]

\[= 15 x 10^6 \text{ kN/m}^2 \]

Area of tensile steel (8 bars)

\[A_s = \frac{8 x 3.1416 x 7^2}{4} \]

\[= 308 \text{ mm}^2 \]

Tensile strength of concrete

\[f_t = 1.8 \text{ MPa for hogging} \]

References

- AS 2870, unless stated otherwise

Yield strength of steel

\[f_y = 500 \text{ MPa} \]

Characteristic strength of concrete

\[f'_c = 20 \text{ MPa} \]

Capacity reduction factor

\[\phi = 0.6 \]

For bending moment

\[> 1.2 M_{cr} \]

\[= 1.2 x 17.5 \]

\[= 21 \text{ kNm} \]

\[> 28.9 \text{ kNm} \]

Area of compressive steel

\[A_s = \frac{8 x 3.1416 x 7^2}{4} \]

\[= 308 \text{ mm}^2 \]
Worked Example

FOR SHEAR:

<table>
<thead>
<tr>
<th>Description</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity reduction factor</td>
<td>(\phi = 0.7) (AS\ 3600\ Table\ 2.2.2)</td>
</tr>
<tr>
<td>Shear capacity</td>
<td>(V_{\text{cap}} = \phi V_u) (AS\ 3600\ 8.2.2)</td>
</tr>
<tr>
<td>(\beta_1 = 1.1 \left(1.6 - \frac{d_0}{1000}\right))</td>
<td>(\beta_1 = 1.1 \left(1.6 - \frac{349}{1000}\right)) (= 1.38) OK</td>
</tr>
<tr>
<td>(\beta_2 = 1.0)</td>
<td></td>
</tr>
<tr>
<td>(\beta_3 = 1.0)</td>
<td></td>
</tr>
<tr>
<td>(V_o = 0)</td>
<td></td>
</tr>
<tr>
<td>(P_v = 0)</td>
<td></td>
</tr>
<tr>
<td>(V_{uc} = \beta_1 \beta_2 \beta_3 b_v d_o \left(\frac{A_{sl} f_E}{b_v d_o}\right)^{1/3} + V_o + P_v)</td>
<td>(V_{uc} = 1.38 \times 1.0 \times 1.0 \times \frac{300 \times 349}{10^3} \times \left(\frac{308 \times 20}{300 \times 349}\right)^{1/3}) (= 56.3 \text{ kN})</td>
</tr>
</tbody>
</table>

Section Properties at Door Openings

(i) Bond beam

- **Effective depth**
 - \(d = 190 \text{ mm} \)
- **Effective moment of inertia**
 - \(I_b = 0.045 b d^3 \)
 - \(I_b = 0.045 \times 190 \times \frac{190^3}{1012} \)
 - \(= 0.0000586 \text{ m}^4 \)
 - \(= 58.6 \times 10^{-6} \text{ m}^4 \)
- **Elastic modulus**
 - \(E = 15 \text{ 000 MPa} \)
 - \(= 15 \times 10^6 \text{ kN/m}^2 \)
- **Stiffness parameter**
 - \(EL = 15 \times 10^6 \times 58.6 \times 10^{-6} \)
 - \(= 879 \text{ kNm}^2 \)

References

- **Note:**
 - References are to AS 2870, unless stated otherwise

FOR SHEAR:

\(V_{us} = 0 \)

\(V_{cap} = \phi V_u \)

\(\beta_1 = 1.1 \left(1.6 - \frac{d_0}{1000}\right) \)

\(\beta_1 = 1.1 \left(1.6 - \frac{349}{1000}\right) \)

\(\beta_1 = 1.38 \) OK

\(\beta_2 = 1.0 \)

\(\beta_3 = 1.0 \)

\(V_o = 0 \)

\(P_v = 0 \)

\(V_{uc} = \beta_1 \beta_2 \beta_3 b_v d_o \left(\frac{A_{sl} f_E}{b_v d_o}\right)^{1/3} + V_o + P_v \)

\(V_{uc} = 1.38 \times 1.0 \times 1.0 \times \frac{300 \times 349}{10^3} \times \left(\frac{308 \times 20}{300 \times 349}\right)^{1/3} \)

\(V_{uc} = 56.3 \text{ kN} \)
Worked Example

(ii) Footing

Area of tensile steel

\[A_s = 285 \text{ mm}^2 \]

Effective depths

\[
\begin{align*}
\text{d}_{\text{bot}} &= 300 - 30 - \frac{8}{2} - 10 \\
&= 256 \text{ mm} \\
\text{d}_{\text{top}} &= 300 - 20 - 7 - \frac{7}{2} \\
&= 269 \text{ mm} \\
\therefore \text{ use } 256 \text{ mm}
\end{align*}
\]

(iii) Combined stiffness

Stiffness parameter

\[E I = 15 \times 10^6 \times 226 \times 10^{-6} = 3396 \text{ kNm}^2 \]

Effective moment of inertia

\[E I_{\text{com}} = 879 + 3396 = 4275 \text{ kNm}^2 \]

Lever arm

\[h = 2400 - \frac{290}{2} + \frac{300}{2} = 2405 \text{ mm} \]

Moment capacity

\[M_u = \phi f_s A_s h = 0.75 \times 500 \times 440 \times 2405 \times 10^6 = 396 \text{ kNm} \]

NOTE: If the opening coincides with the point of support for a cantilevering wall, some modification of the stiffness may be required. See Report by Symons, MG - *Strength of Masonry Wall Panels*

(iv) For bending

Capacity reduction factor

\[\phi = 0.75 \]

Effective depth

\[d_0 = 256 \text{ mm} \]

Steel strength

\[f_{s,y} = 500 \text{ MPa for bars in beam (and mesh)} \]

Area of tensile steel

\[A_s = 4 \times 110 = 440 \text{ mm}^2 \]

Elastic modulus

\[E = 15,000 \text{ MPa} = 15 \times 10^6 \text{ kNm}^2 \]

NOTE: This is a little more conservative than using AS 3600

\[\beta_1 = 1.1 \left(1.6 \frac{d_0}{1000} \right) \]

AS 3600 Table 8.2.7.1

\[= 1.1 \left(1.6 \frac{256}{1000} \right) = 1.48 \]

Area of tensile steel

\[A_s = 4 \times 110 = 440 \text{ mm}^2 \]

NOTE: Combined reinforcement in slab and footing will exceed beam steel

\[\therefore \text{ use } 440 \text{ mm}^2 \]

(v) For shear

FOOTING:

Capacity reduction factor

\[\phi = 0.7 \]

AS 3600 Table 2.2.2

Effective depth

\[d_0 = 256 \text{ mm} \]

AS 3700 Table 4.1

NOTE: Combined reinforcement in slab and footing will exceed beam steel

\[\therefore \text{ use } 440 \text{ mm}^2 \]
Worked Example

Part B: Chapter 10

Footings

- **\(\beta_2 = 1.0 \)**
- **\(\beta_3 = 1.0 \)**
- **\(V_o = 0 \)**
- **\(P_v = 0 \)**
- **\(V_{us} = 0 \)**
- **Shear capacity of footing: \(V_{cap} = \phi V_u \)***

 \[
 V_{cap} = \phi (V_{uc} + V_{us}) \\
 \phi = 0.7 \text{ (39 + 0)} \\
 = 27.3 \text{ kN}
 \]

Shear capacity of bond beam

- **\(V_d = \phi (\frac{f_{ms} b_v d + f_{sv} A_{st} + f_{sy} A_{sv} d}{S}) \)**

 \[
 V_d = 0.75 \left(\frac{(0.35 \times 190 \times 190) + (17.5 \times 220)}{1000} \right) \\
 = 12.4 \text{ kN}
 \]

- **Combining shear strength:**

 \[
 V_{com} = 27.3 + 12.4 \\
 = 39.7 \text{ kN}
 \]

- **Characteristic surface movement:**

 \(y_s = 37 \text{ mm} \)

- **Differential mound movement:**

 \(y_m = 0.7 \times y_s \)

- **Capacity reduction factor:**

 \(\phi = 0.75 \)

- **Characteristic shear strength:**

 \(f_{ms} = 0.35 \text{ MPa} \)

- **Combination of shear strength:**

 \[
 V_d = \phi (f_{ms} b_v d + f_{sv} A_{st} + f_{sy} A_{sv} d) \\
 = 0.75 \left(\frac{(0.35 \times 190 \times 190) + (17.5 \times 220)}{1000} \right) \\
 = 27.3 \text{ kN}
 \]

- **CONSTRUCTION RUNS:**

 Four computer runs using Microstran V 5.5 have been done.

 - **Slabs and beams complying with AS 2870, Figure 3.1:**
 - **Maximum deflection:** 15.5 mm
 - **Differential deflection:** 15.3 mm

- **References:**

 References are to AS 2870, unless stated otherwise.
Run 2

Slabs and beams complying with AS 2870

Figure 3.1 and Note 12

Reinforced masonry external walls

External beams: 300 x 300
Internal beams: 300 x 400

Maximum deflection: 3.3 mm
Differential deflection: 0.8 mm

Run 3

Same as Run 2, but with reinforced masonry internal walls

Maximum deflection: 3.2 mm
Differential deflection: 0.6 mm

Run 4

Same as Run 3, but without any internal beams

Maximum deflection: 3.4 mm
Differential deflection: 1.1 mm

NOTE:

References are to AS 2870, unless stated otherwise

(contact text on the right side of the page with a table and a graph about deflections.)